[前][次][番号順一覧][スレッド一覧]

ruby-changes:35365

From: ko1 <ko1@a...>
Date: Mon, 8 Sep 2014 13:23:11 +0900 (JST)
Subject: [ruby-changes:35365] ko1:r47447 (trunk): * benchmark/bm_app_lc_fizzbuzz.rb: added.

ko1	2014-09-08 13:22:58 +0900 (Mon, 08 Sep 2014)

  New Revision: 47447

  http://svn.ruby-lang.org/cgi-bin/viewvc.cgi?view=revision&revision=47447

  Log:
    * benchmark/bm_app_lc_fizzbuzz.rb: added.
      This program is described closely in "Understanding Computation"
      chapter 6 by Tom Stuart. <http://computationbook.com/>
      Japanese translation will be published soon.
      <http://www.oreilly.co.jp/books/9784873116976/>

  Added files:
    trunk/benchmark/bm_app_lc_fizzbuzz.rb
  Modified files:
    trunk/ChangeLog
Index: ChangeLog
===================================================================
--- ChangeLog	(revision 47446)
+++ ChangeLog	(revision 47447)
@@ -1,3 +1,13 @@ https://github.com/ruby/ruby/blob/trunk/ChangeLog#L1
+Mon Sep  8 13:18:37 2014  Koichi Sasada  <ko1@a...>
+
+	* benchmark/bm_app_lc_fizzbuzz.rb: added.
+
+	  This program is described closely in "Understanding Computation"
+	  chapter 6 by Tom Stuart. <http://computationbook.com/>
+
+	  Japanese translation will be published soon.
+	  <http://www.oreilly.co.jp/books/9784873116976/>
+
 Mon Sep  8 12:01:39 2014  Koichi Sasada  <ko1@a...>
 
 	* gc.c: add incremental GC algorithm. [Feature #10137]
Index: benchmark/bm_app_lc_fizzbuzz.rb
===================================================================
--- benchmark/bm_app_lc_fizzbuzz.rb	(revision 0)
+++ benchmark/bm_app_lc_fizzbuzz.rb	(revision 47447)
@@ -0,0 +1,52 @@ https://github.com/ruby/ruby/blob/trunk/benchmark/bm_app_lc_fizzbuzz.rb#L1
+#
+# FizzBuzz program using only lambda calculus
+#
+# This program is quoted from
+#   "Understanding Computation" by Tom Stuart
+#   http://computationbook.com/
+#
+# You can understand why this program works fine by reading this book.
+#
+
+solution = -> k { -> f { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][y] }] } } } }][k][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> l { -> x { -> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[l][f[x]] } }] } }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x 
 { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[m][n]][-> x { -> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[f[-> n { -> p { -> x { p[n[p][x]] } } }[m]][n]][m][x] }][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]] } } }][-> p { -> x { p[x] } }][-> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] } }]][-> n { -> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n
  { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[
 -> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p 
 { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p
 [n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b
  }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[x]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { 
 -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { 
 -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } 
 }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }]
 [-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x 
 { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> n { -> l { -> x { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][y] }] } } } }][l][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][x]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y]
  } } }[x][l]] } }] } }[-> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> x { f[-> f { -> x { f[-> y { x[
 x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { -> n { -> p { -> x { p[n[p][x]] } } }[f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n]][x] }][-> p { -> x { x } }] } } }][n][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { 
 p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][x] }]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x {
  x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]] } }][n]]]] }]
+
+FIRST     = -> l { LEFT[RIGHT[l]] }
+IF        = -> b { b }
+LEFT      = -> p { p[-> x { -> y { x } } ] }
+RIGHT     = -> p { p[-> x { -> y { y } } ] }
+IS_EMPTY  = LEFT
+REST      = -> l { RIGHT[RIGHT[l]] }
+
+def to_integer(proc)
+  proc[-> n { n + 1 }][0]
+end
+
+def to_boolean(proc)
+  IF[proc][true][false]
+end
+
+def to_array(proc)
+  array = []
+
+  until to_boolean(IS_EMPTY[proc])
+    array.push(FIRST[proc])
+    proc = REST[proc]
+  end
+
+  array
+end
+
+def to_char(c)
+  '0123456789BFiuz'.slice(to_integer(c))
+end
+
+def to_string(s)
+  to_array(s).map { |c| to_char(c) }.join
+end
+
+answer = to_array(solution).map do |p|
+  to_string(p)
+end
+
+answer_str = answer.to_a
+# puts answer_str

--
ML: ruby-changes@q...
Info: http://www.atdot.net/~ko1/quickml/

[前][次][番号順一覧][スレッド一覧]