[前][次][番号順一覧][スレッド一覧]

ruby-changes:15579

From: tadf <ko1@a...>
Date: Sun, 25 Apr 2010 15:52:40 +0900 (JST)
Subject: [ruby-changes:15579] Ruby:r27485 (trunk): * complex.c, ratioanl.c: reverted experimental r24565.

tadf	2010-04-25 15:52:24 +0900 (Sun, 25 Apr 2010)

  New Revision: 27485

  http://svn.ruby-lang.org/cgi-bin/viewvc.cgi?view=rev&revision=27485

  Log:
    * complex.c, ratioanl.c: reverted experimental r24565.

  Modified files:
    trunk/ChangeLog
    trunk/complex.c
    trunk/rational.c
    trunk/test/ruby/test_rational.rb

Index: complex.c
===================================================================
--- complex.c	(revision 27484)
+++ complex.c	(revision 27485)
@@ -1335,20 +1335,6 @@
 
 /*
  * call-seq:
- *    cmp.rationalize([eps])  ->  rational
- *
- * Returns the value as a rational if possible.  An optional argument
- * eps is always ignored.
- */
-static VALUE
-nucomp_rationalize(int argc, VALUE *argv, VALUE self)
-{
-    rb_scan_args(argc, argv, "01", NULL);
-    return nucomp_to_r(self);
-}
-
-/*
- * call-seq:
  *    nil.to_c  ->  (0+0i)
  *
  * Returns zero as a complex.
@@ -1937,7 +1923,6 @@
     rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
     rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
     rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
-    rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
     rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
     rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
 
Index: ChangeLog
===================================================================
--- ChangeLog	(revision 27484)
+++ ChangeLog	(revision 27485)
@@ -1,3 +1,7 @@
+Sun Apr 25 15:51:00 2010  Tadayoshi Funaba  <tadf@d...>
+
+	* complex.c, ratioanl.c: reverted experimental r24565.
+
 Sun Apr 25 15:34:48 2010  Tadayoshi Funaba  <tadf@d...>
 
 	* lib/date.rb, lib/date/delta*: reverted experimental r24567 and
Index: test/ruby/test_rational.rb
===================================================================
--- test/ruby/test_rational.rb	(revision 27484)
+++ test/ruby/test_rational.rb	(revision 27485)
@@ -965,61 +965,6 @@
     end
   end
 
-  def test_rationalize
-    c = nil.rationalize
-    assert_equal([0,1], [c.numerator, c.denominator])
-
-    c = 0.rationalize
-    assert_equal([0,1], [c.numerator, c.denominator])
-
-    c = 1.rationalize
-    assert_equal([1,1], [c.numerator, c.denominator])
-
-    c = 1.1.rationalize
-    assert_equal([11, 10], [c.numerator, c.denominator])
-
-    c = Rational(1,2).rationalize
-    assert_equal([1,2], [c.numerator, c.denominator])
-
-    assert_equal(nil.rationalize(Rational(1,10)), Rational(0))
-    assert_equal(0.rationalize(Rational(1,10)), Rational(0))
-    assert_equal(10.rationalize(Rational(1,10)), Rational(10))
-
-    r = 0.3333
-    assert_equal(r.rationalize, Rational(3333, 10000))
-    assert_equal(r.rationalize(Rational(1,10)), Rational(1,3))
-    assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3))
-
-    r = Rational(5404319552844595,18014398509481984)
-    assert_equal(r.rationalize, r)
-    assert_equal(r.rationalize(Rational(1,10)), Rational(1,3))
-    assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3))
-
-    r = -0.3333
-    assert_equal(r.rationalize, Rational(-3333, 10000))
-    assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3))
-    assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3))
-
-    r = Rational(-5404319552844595,18014398509481984)
-    assert_equal(r.rationalize, r)
-    assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3))
-    assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3))
-
-    if @complex
-      if @keiju
-      else
-	assert_raise(RangeError){Complex(1,2).rationalize}
-      end
-    end
-
-    if (0.0/0).nan?
-      assert_raise(FloatDomainError){(0.0/0).rationalize}
-    end
-    if (1.0/0).infinite?
-      assert_raise(FloatDomainError){(1.0/0).rationalize}
-    end
-  end
-
   def test_gcdlcm
     assert_equal(7, 91.gcd(-49))
     assert_equal(5, 5.gcd(0))
Index: rational.c
===================================================================
--- rational.c	(revision 27484)
+++ rational.c	(revision 27485)
@@ -1354,141 +1354,6 @@
     return self;
 }
 
-#define id_ceil rb_intern("ceil")
-#define f_ceil(x) rb_funcall(x, id_ceil, 0)
-
-#define id_quo rb_intern("quo")
-#define f_quo(x,y) rb_funcall(x, id_quo, 1, y)
-
-#define f_reciprocal(x) f_quo(ONE, x)
-
-/*
-  The algorithm here is the method described in CLISP.  Bruno Haible has
-  graciously given permission to use this algorithm.  He says, "You can use
-  it, if you present the following explanation of the algorithm."
-
-  Algorithm (recursively presented):
-    If x is a rational number, return x.
-    If x = 0.0, return 0.
-    If x < 0.0, return (- (rationalize (- x))).
-    If x > 0.0:
-      Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
-      exponent, sign).
-      If m = 0 or e >= 0: return x = m*2^e.
-      Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
-      with smallest possible numerator and denominator.
-      Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
-        But in this case the result will be x itself anyway, regardless of
-        the choice of a. Therefore we can simply ignore this case.
-      Note 2: At first, we need to consider the closed interval [a,b].
-        but since a and b have the denominator 2^(|e|+1) whereas x itself
-        has a denominator <= 2^|e|, we can restrict the search to the open
-        interval (a,b).
-      So, for given a and b (0 < a < b) we are searching a rational number
-      y with a <= y <= b.
-      Recursive algorithm fraction_between(a,b):
-        c := (ceiling a)
-        if c < b
-          then return c       ; because a <= c < b, c integer
-          else
-            ; a is not integer (otherwise we would have had c = a < b)
-            k := c-1          ; k = floor(a), k < a < b <= k+1
-            return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
-                              ; note 1 <= 1/(b-k) < 1/(a-k)
-
-  You can see that we are actually computing a continued fraction expansion.
-
-  Algorithm (iterative):
-    If x is rational, return x.
-    Call (integer-decode-float x). It returns a m,e,s (mantissa,
-      exponent, sign).
-    If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
-    Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
-    (positive and already in lowest terms because the denominator is a
-    power of two and the numerator is odd).
-    Start a continued fraction expansion
-      p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
-    Loop
-      c := (ceiling a)
-      if c >= b
-        then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
-             goto Loop
-    finally partial_quotient(c).
-    Here partial_quotient(c) denotes the iteration
-      i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
-    At the end, return s * (p[i]/q[i]).
-    This rational number is already in lowest terms because
-    p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
-*/
-
-static void
-nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
-{
-    VALUE c, k, t, p0, p1, p2, q0, q1, q2;
-
-    p0 = ZERO;
-    p1 = ONE;
-    q0 = ONE;
-    q1 = ZERO;
-
-    while (1) {
-	c = f_ceil(a);
-	if (f_lt_p(c, b))
-	    break;
-	k = f_sub(c, ONE);
-	p2 = f_add(f_mul(k, p1), p0);
-	q2 = f_add(f_mul(k, q1), q0);
-	t = f_reciprocal(f_sub(b, k));
-	b = f_reciprocal(f_sub(a, k));
-	a = t;
-	p0 = p1;
-	q0 = q1;
-	p1 = p2;
-	q1 = q2;
-    }
-    *p = f_add(f_mul(c, p1), p0);
-    *q = f_add(f_mul(c, q1), q0);
-}
-
-/*
- * call-seq:
- *    rat.rationalize       ->  self
- *    rat.rationalize(eps)  ->  rational
- *
- * Returns a simpler approximation of the value if an optional
- * argument eps is given (rat-|eps| <= result <= rat+|eps|), self
- * otherwise.
- *
- * For example:
- *
- *    r = Rational(5033165, 16777216)
- *    r.rationalize                    #=> (5033165/16777216)
- *    r.rationalize(Rational('0.01'))  #=> (3/10)
- *    r.rationalize(Rational('0.1'))   #=> (1/3)
- */
-static VALUE
-nurat_rationalize(int argc, VALUE *argv, VALUE self)
-{
-    VALUE e, a, b, p, q;
-
-    if (argc == 0)
-	return self;
-
-    if (f_negative_p(self))
-	return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
-
-    rb_scan_args(argc, argv, "01", &e);
-    e = f_abs(e);
-    a = f_sub(self, e);
-    b = f_add(self, e);
-
-    if (f_eqeq_p(a, b))
-	return self;
-
-    nurat_rationalize_internal(a, b, &p, &q);
-    return f_rational_new2(CLASS_OF(self), p, q);
-}
-
 /* :nodoc: */
 static VALUE
 nurat_hash(VALUE self)
@@ -1788,20 +1653,6 @@
 
 /*
  * call-seq:
- *    nil.rationalize([eps])  ->  (0/1)
- *
- * Returns zero as a rational.  An optional argument eps is always
- * ignored.
- */
-static VALUE
-nilclass_rationalize(int argc, VALUE *argv, VALUE self)
-{
-    rb_scan_args(argc, argv, "01", NULL);
-    return nilclass_to_r(self);
-}
-
-/*
- * call-seq:
  *    int.to_r  ->  rational
  *
  * Returns the value as a rational.
@@ -1817,20 +1668,6 @@
     return rb_rational_new1(self);
 }
 
-/*
- * call-seq:
- *    int.rationalize([eps])  ->  rational
- *
- * Returns the value as a rational.  An optional argument eps is
- * always ignored.
- */
-static VALUE
-integer_rationalize(int argc, VALUE *argv, VALUE self)
-{
-    rb_scan_args(argc, argv, "01", NULL);
-    return integer_to_r(self);
-}
-
 static void
 float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
 {
@@ -1896,64 +1733,6 @@
 #endif
 }
 
-/*
- * call-seq:
- *    flt.rationalize([eps])  ->  rational
- *
- * Returns a simpler approximation of the value (flt-|eps| <= result
- * <= flt+|eps|).  if eps is not given, it will be chosen
- * automatically.
- *
- * For example:
- *
- *    0.3.rationalize          #=> (3/10)
- *    1.333.rationalize        #=> (1333/1000)
- *    1.333.rationalize(0.01)  #=> (4/3)
- */
-static VALUE
-float_rationalize(int argc, VALUE *argv, VALUE self)
-{
-    VALUE e, a, b, p, q;
-
-    if (f_negative_p(self))
-	return f_negate(float_rationalize(argc, argv, f_abs(self)));
-
-    rb_scan_args(argc, argv, "01", &e);
-
-    if (argc != 0) {
-	e = f_abs(e);
-	a = f_sub(self, e);
-	b = f_add(self, e);
-    }
-    else {
-	VALUE f, n;
-
-	float_decode_internal(self, &f, &n);
-	if (f_zero_p(f) || f_positive_p(n))
-	    return rb_rational_new1(f_lshift(f, n));
-
-#if FLT_RADIX == 2
-	a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE),
-			     f_lshift(ONE, f_sub(ONE, n)));
-	b = rb_rational_new2(f_add(f_mul(TWO, f), ONE),
-			     f_lshift(ONE, f_sub(ONE, n)));
-#else
-	a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f),
-				   INT2FIX(FLT_RADIX - 1)),
-			     f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
-	b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f),
-				   INT2FIX(FLT_RADIX - 1)),
-			     f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
-#endif
-    }
-
-    if (f_eqeq_p(a, b))
-	return f_to_r(self);
-
-    nurat_rationalize_internal(a, b, &p, &q);
-    return rb_rational_new2(p, q);
-}
-
 static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore;
 
 #define WS "\\s*"
@@ -2322,7 +2101,6 @@
     rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
     rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
     rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
-    rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
 
     rb_define_method(rb_cRational, "hash", nurat_hash, 0);
 
@@ -2348,11 +2126,8 @@
     rb_define_method(rb_cFloat, "denominator", float_denominator, 0);
 
     rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
-    rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
     rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
-    rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
     rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
-    rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
 
     make_patterns();
 

--
ML: ruby-changes@q...
Info: http://www.atdot.net/~ko1/quickml/

[前][次][番号順一覧][スレッド一覧]